
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, VOL. XII, 609622 

Diagrammatic Perturbation Theory: Potential Curves for 
the Ground State of the Carbon Monoxide Molecule 

STEPHEN WILSON* 
Institute for Space Studies, New York, New York 10025, U.S.A 

Abstracts 

Diagrammatic many-body perturbation theory is used to calculate the potential energy function for 
the X'X+ state of the CO molecule near the equilibrium nuclear configuration. Spectroscopic 
constants are derived from a number of curves which are obtained from calculations taken through 
third order in the energy. By forming 12/11 Pad6 approximants to the constants we obtain: re = 
1.175A (1.128A), Be = 1.943cm-' (1.9312cm-'), a:=0.0156cm-' (0.0175cm-'), we = 
2247 cm-' (21 70 cm-'), w d x ,  = 12.16 cm-' (13.29 cm-'), where the experimental values are given in 
parenthesis. 

La theorie des perturbations diagrammatique a N corps a 6tt  utiliste pour calculer l'energie 
potentielle pour I'ttat X'X+ de la moltcule CO pres de I'tquilibre. Des constantes spectroscopiques 
ont 6tt  calculies d'un nombre de courbes, obtenues de calculs des energies jusqu'au troisitme ordre. 
Les approximants de Pad; de type [2/1] pour les constantes donnent: re = 1.125 8, (1.128 A), 
Be = 1.943 cm-' (1.9312 cm-'), a:= 0.0156 cm-' (0.0175 cm-'), o, = 2247 cm-' (2170 cm-'), 
o~~ = 12.16 cm-' (13.29 cm-'), ou les valeurs exp6rimentales sont donntes entre parentheses. 

Diagrammatische Vielteilchenstorungstheorie ist benutzt worden, um die Potentialenergiefunk- 
tion fur den Zustand X'X' des CO-Molekuls in der Nahe der Gleichgewichtskonfiguration zu 
berechnen. Spektroskopische Konstanten sind von einer Reihe von Kurven hergeleitet worden, die 
von Energieberechnungen bis zur dritten Ordnung erhalten worden waren. Die erhaltenen [2/1]- 
Padt-Approximanten der Konstante sind: re = 1.125 8, (1.128 A), Be = 1.943 cm-' (1.9312 cm-'), 
a:= 0.0156 cm-' (0.0175 cm-I), o, = 2247 cm-' (2170 cm-'1, w d e  = 12.16 cm-' (13.29 cm-I), wo 
die Experimentalwerte in Klammern gegeben sind. 

Introduction 

Studies of the carbon monoxide molecule [l] at its equilibrium nuclear 
configuration have shown that diagrammatic perturbation theory [2 ,3 ] ,  when 
taken through third order in the energy [4], can provide an accuracy which 
compares favorably with other theoretical methods. In this paper, we extend this 
study by reporting potential curves for the X'X+ state of CO for each of the energy 
quantities which may be derived from the third-order perturbation expansion. 
However, since the Hartree-Fock model is used to generate a reference spectrum 
and, as is well known, this model does not usually describe molecular dissociation 
correctly, we shall confine our attention to those configurations close to equilib- 
rium. 
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Two different reference Hamiltonian operators are employed. From the two 
corresponding perturbation expansions, we construct [2/ 13 Pad6 approximants 
[S] and variational upper bounds [4,6-91 to the energy in addition to the usual 
truncated Taylor expansion. In this paper we compare the potential curves 
corresponding to each of these quantities and the spectroscopic constants, re, Be, 
a,, we, wexe, which may be derived from them. 

The calculations are performed within the albebraic approximation [4]. The 
one-electron state functions are parameterized by expansion in a finite set of basis 
functions. This is necessary in order to apply the diagrammatic perturbation 
expansion to molecules other than those containing hydrogen atoms, which may 
be treated as an additional perturbation. The carbon monoxide molecule may be 
regarded as a prototype for such systems. 

A study of the neon atom [4] has shown that the diagrammatic perturbation 
expansion, when taken through third order in the energy, provides an accuracy 
which is comparable with that afforded by the method of configuration interaction 
when the same basis set is employed. The relation between the diagrammatic 
many-body perturbation expansion and the method of configuration interaction 
has been explored previously [4]. 

In the following section, we give a brief outline of the diagrammatic perturba- 
tive expansion. More detailed discussions may be found elsewhere [2-41. In the 
third section the resulting potential energy curves are given. Spectroscopic 
constants are presented in the fourth section. In the final section results are 
discussed. 

€3 

Diagrammatic Perturbation Theory 

The diagrammatic perturbation expansion, when taken through third order in 
the energy, not only provides an attractive pictorial representation of electron 
correlation effects but also forms the basis of a noniterative and computationally 
efficient algorithm [ 101 for electronic structure calculations to an accuracy well 
beyond that afforded by the Hartree-Fock model [4, 11, 121. 

The correlation energy is given by the diagrammatic expansion 

where only the parent Goldstone diagram of each set which are related by electron 
exchange is given. The first diagram is associated with second-order effects; the 
remaining diagrams are of third order. The analytic expressions corresponding to 
these diagrams are easily written down [4]. 

In this work, we shall denote a component of the correlation energy by E t ,  
where a is the number of bodies involved and b the order of perturbation. Eb 
denotes the total bth order energy but E" will denote the total a-body energy 
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through third order. E ( c )  will be used to denote the total energy through cth 
order. 

Two different reference Hamiltonian operators are employed in this study: the 
Hartree-Fock model Hamiltonian and the shifted Hamiftonian [4]. The latter will 
be distinguished by placing a bar on the corresponding energy quantities. 

From the third-order expansion for the energy we can construct the Pad6 
approximant 

E[2/ 11 = Eo + El +E2/( 1 -E3/E2) (2) 
This approximant has certain desirable invariance properties which are not shared 
by the Taylor expansion [ S ] .  It is invariant to change of scale and shift of origin in 
the reference spectrum. 

By substituting the first-order wave function 

%+Y% (3) 

(4) 

in the RayIeigh quotient, we obtain the upper bound [6-91 

E",AY) =Eo+E, +((2Y - Y 2 ) E 2 + Y 2 E 3 ) / ( 1  +r2S) 
where y is a parameter whose optimal value may be determined by invoking the 
variation theorem and S = 

Potential Energy Functions 

The basis set of Slater exponential functions used to parameterize the one- 
electron state functions in the present study is given in Table I. It is based on the 

TABLE I. Basis set of Slater exponential functions.a 

0 : 1s (7.6063, 13.224) ; 2s (3.11196,6.3783,1.80848); 2pb( 1.796, 
3 3 37971 - 15 36 7.907 ) i 3d& 1144) 8 4f6(2 - 5 ) I 2pJl 8171 , 
3.437971 .1536,7.907 ); 3dlT(2.2297) ; 4fJ2.482) ; 3df(2.2297) ; 
4fs ( Z .  482). 

a Orbital exponents are given in parenthesis. 

set given by McLean and Yoshimine [13]. It consists of 54 functions: 22 of 
v-symmetry, 24 of w-symmetry, and 8 of 6-symmetry. Calculations were per- 
formed at twelve nuclear separations in the range 1.8 to 3.0 bohrs using this basis 
set. 
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In Tables I1 and I11 we present the components of the calculated correlation 
energy as a function of the nuclear separation r. The variation of the second-order 
and third-order components is shown in Table 11, while in Table I11 we show the 

TABLE 11. Variation of second- and third-order energies with 
nuclear separation." 

E2 R 

1.8 -0. 3aaa 

1.9 -0.3900 

2.0 -9.3978 

2.05 -0.4019 

2.1 -0.4061 

2.132 -3.4009 

2.15 -0.4104 

2.2 -3.4148 

2.3 -0.4240 

2.4 -0.4335 

2.5 -0.4433 

3.0 -0 * 485 3 

- 
E2 E3 

-0.4533 -0.0070 

-0.4654 -0.0047 

-0.4794 -0.0019 

-0.4972 -0.0003 

-0.4953 +0.3015 

-0.5006 +3.0028 

-0.5037 +3.0035 

-0.5123 +3.0056 

-0.5302 +0.0104 

-0.5485 +0.0159 

-0.5662 +0.0222 

-0.6366 +0.0569 

- 
E3 

+0.0750 

+0.0853 

+0.0991 

+0.1075 

+0.1169 

+0.1?33 

+0.1270 

+o. 1380 

+0.1624 

+0.1894 

+0.2167 

+0.3396 

a Atomic units are used throughout. 

variation of two-body, three-body, and four-body components of the correlation 
energy through third order. In both of these tables results are presented for the 
two reference Hamiltonian operators discussed above. The variations of the 
components of the correlation energy with r are sketched in Figure 1 for the 
perturbation expansion corresponding to the model reference Hamiltonian. 

In Table IV the calculated potential energy functions for the ground state of 
the carbon monoxide molecule are displayed. Rigorous upper bounds to these 
curves are presented in Table V. Values of the variationally optimized parameter 
y of Eq. (4) are also included in Table V. The [2/1] Pad6 approximant and upper 
bound to the energy obtained from the perturbation expansion generated by the 
Hartree-Fock model Hamiltonian are illustrated in Figure 2, together with the 
matrix Hartree-Fock potential energy curve. 

Spectroscopic Constants 

The solution of the electronic Schrodinger equation yields the potential energy 
function in tabular form. It is necessary to interpolate between these calculated 
values in order to determine spectroscopic constants. Power series expansions 



DIAGRAMMATIC PERTURBATION THEORY 613 

TABLE 111. Variation of two-, three- and four-body components of the correla- 
tion energy with nuclear separation.= 

R E2 E3 E4 E2 8 3  -4 
~~ 

1.8 

1.9 

2.0 

2.05 

2.1 

2.132 

2.15 

2.2 

2.3 

2.4 

2.5 

3.0 

~~ 

-0.4510 

-0.4611 

-0.4718 

-0.4773 

-0.4830 

-0.4867 

-0.4888 

-0.4947 

-0.5069 

-0.5197 

-0.5330 

-0.5964 

+0.0533 

+0.0632 

+0.0686 

+0.0715 

~0 .0746 

+0.0766 

+0.0778 

+o. 0311 

+O. 0833 

+3.0963 

+0.1054 

+0.1599 

+3.0029 

+0.0031 

+o. 0034 

+0.0036 

+0.0038 

+0.0040 

+0.0041 

+0.0044 

+0.0050 

+0.0058 

+0.0066 

~0.0082 

-0.4729 

-0.4850 

-0.4981 

-0.5050 

-0.5121 

-0.5167 

-0.5193 

-0.5267 

-0.5419 

-0.5577 

-3.5742 

-3.6573 

+O. 0905 

+0.1004 

+0.1127 

+0.1199 

+0.12?7 

+0.1330 

+0.1362 

+0.1453 

+0.1655 

+0.1882 

+0.2125 

+O. 3435 

~~ 

+O. 0040 

+0.0044 

+0.0051 

+0.0054 

~0 .005  9 

+0.0063 

+0.0065 

+o. 3071 

+O. 0086 

+0.0104 

+0.0123 

+0.0167 

a Atomic units are used throughout. 

TABLE IV. Potential energy curves for the X'X' state of the carbon 
monoxide molecule." 

1.8 

1.9 

2.0 

2.05 

2.1 

2.132 

2.15 

2.2 

2-3  

2.4 

2.5 

3.0 

-112.70248 -113.0923 

-112.75831 -113.1531 

-112.78486 -11 3.1846 

-112.78990 -113.1921 

-112.79058 -113-1951 

-112.78907 -113 - 1951 

-112.78762 -113.1945 

-112.78163 -113.1908 

-112.76255 -113.1761 

-112.73668 -113.1543 

-112.70647 -113.1276 

-112.53920 -112- 9675 

-113.0808 

-113.1385 

-113.1652 

-11 3.1696 

-11 3.1690 

-113.1664 

-113.1643 

-113.1560 

-1 13.1304 

-11 3.0958 

-11 3 - 0559 

-112.8362 

-113.0924 

-1 13.15 32 

-1 13.1846 

-113.1921 

-113.1951 

-113.1952 

-113.1946 

-113.1908 

-113.1764 

-113.1548 

-113.1286 

-112.7735 

-113.0915 

-113.1517 

-1 13.1822 

-113.1890 

-113 -191 3 

-113.1908 

-113.1899 

-113.1852 

-113.1585 

-113.1444 

-11 3.1159 

-112.3544 

a Atomic units are used throughout. 
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Figure 1. Variation of the components of the correlation energy resulting from the 
model perturbation expansion with changing internuclear separation. The compo- 
nents are: (a) E: (hole-particle); (b) E3 (particle-particle); (c) E3 (hole-hole); (d) E: 
(hole-hole); (e) E3;  ( f )  E': (hole-hole); (g) E: (hole-hole); (h) Ez+  E,; (i) Ez;  (j) E3 
(hole-particle); (k) E: (hole-particle). All curves refer to the left-hand scale except 
curves (h) and (i) which refer to the right-hand scale. 

provide a reasonably general means of doing this for nuclear separations close to 
equilibrium. 

In the present work we fit the calculated energy values to the expansion [ 141 

where 
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TABLE V. Upper bounds to the potential energy curve for the X'Z' state of the 
carbon monoxide molecule." 

R Evar" 'var(v=l )  Evar( y o 3 4  '=,(<opt, "-,pt 7opt 

1.8 -113.0629 -113.3380 -113.0641 -113.0605 0.9447 087898 

1.9 -113.1214 -113.0918 -113.1230 -113.1186 0.9351 0.7743 

2.0 -113.1504 -113.1142 -113.1526 -113.1470 0.9245 0.7554 

2.05 -113.1565 -113.1162 -113.1591 -113.1528 0.9188 0.7448 

2.1 -113.1532 -113.1132 -113.1613 -113.1540 0.9129 0.7337 

2.132 -113.1573 -113.1091 -113.1607 -113.1528 0.9089 0*7265 

2.15 -113.1561 -113.1360 -113.1597 -113.1515 0.9067 0.7223 

2.2 -113.1509 -113.0952 -113.1551 -113.1457 0.9003 O*7lo7 

2.3 -113.1330 -113.0647 -113.1385 -113.1268 0.8868 0.6870 

2.4 -113.1078 -11 3.0256 -11 3.1149 -113.1007 0.8725 0. 6637 

2.5 -113.0775 -112.9817 -113.0867 -113.0703 0.8577 0.6426 

3.0 -112.9000 -112.7511 -112.9228 -112.9006 0.7904 0.5677 

a Atomic units are used throughout. 

The radius of convergence of such an expansion is 0 < r < 2re, where re is the 
equilibrium nuclear separation. An eighth-order polynomial was used to interpo- 
late the reference energies and a fourth-order polynomial to interpolate the 
correlation energy corrections. The accuracy of this technique has been discussed 
previously [15]. In the fitting procedure we included all of the calculated points 
except that at r = 2.132 bohrs. 

The rotation constant Be calculated from the matrix Hartree-Fock reference 
potential energy curve, 2.023 cm-', agrees well with the value given by Huo [16], 
2.027 cm-'. Similar good agreement was found for the calculated fundamental 
frequency of vibration; namely, 2438 cm-' compared with Huo's value of 
243 1 cm-'. 

In Tables VI-X calculated spectroscopic constants are presented. In Table XI 
the change in the spectroscopic constants with increasing order of the energy are 
demonstrated. Thus X1 denotes a quantity calculated from the matrix Hartree- 
Fock reference potential function X ,  a quantity derived from the second-order 
curve, and X ,  from the third-order curve. The values given in Table XI, corres- 
pond to the model perturbation expansion which has been found to be the more 
rapidly convergent for the energy. 

Discussion 

As was the case in our studies of other systems [4, 11, 151, the model 
perturbation expansion appears to be the more rapidly convergent of the two 
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- I  13.41 

Figure 2. Potential curves for the X'Z* state of the carbon monoxide molecule. 
Curve a is the Hartree-Fock potential energy function. Curve b corresponds to the 
Evar (yopt) energy values while curve c results from the Pad6 approximant E [2/1]. 
Curves d and e are derived from the experimental data. The latter is the Morse 
function determined by the experimentally determined values of re, De, and we, while 
the former includes an empirical correction for the relativistic energy. 

expansions considered in this work. In Figure 3, we show the differences between 
the energies derived from the two perturbation expansions as a function of nuclear 
separation. The use of the [2/1] Pad6 approximants and the optimized upper 
bounds represent considerable improvements on the values of E(3) and E(3) .  

A more detailed analysis of the correlation energy corresponding to the model 
perturbation expansion is presented in Figure 3 .  It shows several interesting 
features which have been confirmed in studies of other systems [15]. Ei(hh) 
is very small and yet represents the entire four-body component. E:(hh) is 
negligible and thus E?(hp) represents the only significant three-body effect and by 
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TABLE VI. Comparison of calculated equilibrium nuclear separations.= 

Reference vx model %shifted 

E(2) 1.136 1.182 0.046 

E(3) 1.120 1 095 0.025 

1.120 1.114 0.006 E 

Evar(f=l) 1.109 1.082 0.027 

1.113 1.106 0.007 
Evar ' J D p b )  

a Angstrom units are used throughout. 
A = Ire,model- rc.shiftedl- 

TABLE VII. Comparison of calculated rotation constants, B3.a 

Reference & $ s h i f t e d  hb 

E(2) 1.906 1.759 0.147 

E(3) 1.961 2.051 0.090 

E r 2 / i  1.961 1.983 0.022 

E v a J L t )  

Evar 1.998 2.101 0.103 

1 987 2.010 0.023 

a cm-' are used throughout. 
A = IBe,model -Bc.shifted(. 

TABLE VIII. Comparison of calculated vibration-rotation 
interaction constants, 

shifted 
03t Ab 

E ( 2 )  0.0163 0.0287 0.0124 

E(3) 0.0147 0.0099 0.0048 

E w g  0.0151 0.0140 0.0011 

Evar( <opt 

Evs , ( . f4  0.0139 0.0100 0.0039 

0.0147 0.0139 0.0008 
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TABLE IX. Comparison of calculated fundamental frequencies of 
vibration, o,.' 

$shifted Ab 

E(2) 2133 1771 362 

E(3) 2316 2676 360 

E @/il 2308 2398 90 

Evar (̂ (=I 2416 2797 381 

Eyar(fopt) 2370 2457 87 

TABLE X. Comparison of calculated anharmonicity constants, o & ~ . ~  

E(2) 13.44 7-29 6.15 

E(3) 10.41 7-63 2.78 

E evil 10.92 10.88 0.04 

E w r W = l )  9.78 8.12 1.66 

Evar(<opt) 10.74 10.92 0.18 

far the most important many-body component. Thus E 3  =E:(hp)  and E3(hh) = 
E@zh). We also note that E3(hh) = E 3 ( p p )  =E:(hp) .  All of the components 
discussed so far are positive; E2 and &(lap) are negative. There is a large 
cancellation among the components of the third-order energy and the total is 
relatively small. 

The potential curves corresponding to the [2/ 11 Pad6 approximant and the 
optimized upper bound for the model perturbation expansion are compared with 
other relevant curves in Figure 2. Curve d includes an empirical correction for the 
relativistic energy. It is assumed that the relativistic energy is independent of the 
nuclear geometry and equal to the sum of the relativistic energy of the carbon and 
oxygen atoms as given by Veillard and Clement [17]. (The small Lamb corrections 
are ignored.) 

It is clear from Tables VI-X that the use of the potential energy curves 
corresponding to the [2/ 11 Pad6 approximants and the optimized upper bounds 
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TABLE XI. Spectroscopic constants corresponding to first-, second- and 
third-order potential curves derived from the perturbation expansion in 
which the Hartree-Fock operator is used as a reference Hamiltonian. 

Property re Be d B  Us, 'ex, 

x1 

Ax2 

x2 

AX, 

x3  

X W i l  

1.102 2.023 0.0149 2438 11.24 

+0.034 -0.117 +0.0014 -305 +2.20 

1.136 1.906 0.0163 2133 13.44 

-0.016 +0.055 -0.0016 +133 -3.03 

1.120 1.961 0.0147 2316 10.41 

AX3/bx2 -0.47 -0.47 -1.14 -0.60 -1.38 

1.125 1.943 0.0156 2247 12.16 

Xi denotes the property X calculated from the ith order potential curve; 
thus X I  is a property calculated from the matrix Hartree-Fock potential 
curve. AXi denotes the change in the property X on going from the (i - 1)th 
order potential curve to the ith order potential curve. re is in Angstroms; all 
other qyantities are in cm-'. 

leads to closer agreement between spectroscopic constants derived from the 
model and the shifted perturbation expansions than does the use of the other 
energy values. Spectroscopic constants derived from the model expansion change 
less than those derived from the shifted expansion on going from second order to 
third order. This suggests that the constants derived from the model expansion 
converge more rapidly than those derived from the shifted series. The con- 
vergence of the spectroscopic constants with order of perturbation for the model 
expansion is shown in Table XII. h X 3 / h X 2  may be regarded as a qualitative 
measure of convergence. Note that the value of this ratio for the spectroscopic 
constants is considerably larger than E3/E2,  which at r = 2.132 bohrs, takes the 
value -0.007. We note also that the ratio is negative for the cases considered here. 
Based on experience in calculations of the energy [ l ,  4, 11, 121, we make the 
conjecture that the Pad; approximant 

m / 1 1  =XI + h x z / ( l -  U 3 / h X , )  (7) 
will form a useful representation of the property X. This approximant has been 
constructed for the properties considered in this work and is given in the final row 
of Table XII. 

The calculated spectroscopic constants are compared with the experimental 
results in Table XI. The Pad6 approximants X [2/1] are uniformly closer to 
experiment than the simple third-order results are. The closeness of some of the 
second-order results to experiment is probably fortuitous. The calculated con- 
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1.5 2.0 2.5 3.0 
R-+ 

Figure 3. Differences between the energy values corresponding to the model and 
shifted perturbation expansions as a function of nuclear separation. 

stants are uniformly biased towards the Hartree-Fock values. Thus, for example, 
the calculated value of the equilibrium internuclear distance re [2/1] differs from 
the experimental value by 0.003 and is biased towards the Hartree-Fock value, 
which differs from the experimental value by 0.026w. 89% of the difference 
between the Hartree-Fock value of re and the experimental re is accounted for by 
the present calculation. 

Many ab inifio studies of the ground state of the carbon monoxide molecule 
have been reported previously [ 181. Siu and Davidson [ 191 obtained a total energy 
of -1 13.1456 hartree at a nuclear separation of 2.132 bohrs using the method of 
configuration interaction. This should be compared with the values given in 
Tables IV and V. A detailed comparison of third-order diagrammatic perturba- 
tion theory and the method of configuration interaction for the ground state of the 
CO molecule at its equilibrium geometry has been given [l]. Hall et al. [20] have 
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TABLE XII. Comparison of calculated spectroscopic constants with experi- 
mentally determined values.* 

Poten t ia l  
function re(') 

* The percentage difference between the theoretical and experimental 
values is given in parenthesis. 

used configuration interaction to obtain theoretical values of the equilibrium bond 
distance and the fundamental frequency of vibration. For the former they 
obtained re = 1.138 8, while for the latter they reported o, = 2000 cm-'. These 
values differ from experiment by 0.9 and 7.8%, respectively. 

Finally, we remark that the present approach to the accurate calculation of 
potential functions is computationally tractable. It forms the basis of an efficient 
and non-iterative algorithm [lo]. 
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